Time-frequency mixed-norm estimates: Sparse M/EEG imaging with non-stationary source activations

نویسندگان

  • Alexandre Gramfort
  • Daniel Strohmeier
  • Jens Haueisen
  • Matti S. Hämäläinen
  • Matthieu Kowalski
چکیده

Magnetoencephalography (MEG) and electroencephalography (EEG) allow functional brain imaging with high temporal resolution. While solving the inverse problem independently at every time point can give an image of the active brain at every millisecond, such a procedure does not capitalize on the temporal dynamics of the signal. Linear inverse methods (minimum-norm, dSPM, sLORETA, beamformers) typically assume that the signal is stationary: regularization parameter and data covariance are independent of time and the time varying signal-to-noise ratio (SNR). Other recently proposed non-linear inverse solvers promoting focal activations estimate the sources in both space and time while also assuming stationary sources during a time interval. However such a hypothesis holds only for short time intervals. To overcome this limitation, we propose time-frequency mixed-norm estimates (TF-MxNE), which use time-frequency analysis to regularize the ill-posed inverse problem. This method makes use of structured sparse priors defined in the time-frequency domain, offering more accurate estimates by capturing the non-stationary and transient nature of brain signals. State-of-the-art convex optimization procedures based on proximal operators are employed, allowing the derivation of a fast estimation algorithm. The accuracy of the TF-MxNE is compared with recently proposed inverse solvers with help of simulations and by analyzing publicly available MEG datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

M/EEG source reconstruction based on Gabor thresholding in the source space

Thanks to their high temporal resolution, source reconstruction based on Magnetoencephalography (MEG) and/or Electroencephalography (EEG) is an important tool for noninvasive functional brain imaging. Since the MEG/EEG inverse problem is ill-posed, inverse solvers employ priors on the sources. While priors are generally applied in the time domain, the time-frequency (TF) characteristics of brai...

متن کامل

Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods.

Magneto- and electroencephalography (M/EEG) measure the electromagnetic fields produced by the neural electrical currents. Given a conductor model for the head, and the distribution of source currents in the brain, Maxwell's equations allow one to compute the ensuing M/EEG signals. Given the actual M/EEG measurements and the solution of this forward problem, one can localize, in space and in ti...

متن کامل

A Time-Frequency approach for EEG signal segmentation

The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...

متن کامل

Sparse EEG/MEG source estimation via a group lasso

Non-invasive recordings of human brain activity through electroencephalography (EEG) or magnetoencelphalography (MEG) are of value for both basic science and clinical applications in sensory, cognitive, and affective neuroscience. Here we introduce a new approach to estimating the intra-cranial sources of EEG/MEG activity measured from extra-cranial sensors. The approach is based on the group l...

متن کامل

A Distributed Spatio-temporal EEG/MEG Inverse Solver

We propose a novel l(1)l(2)-norm inverse solver for estimating the sources of EEG/MEG signals. Based on the standard l(1)-norm inverse solvers, this sparse distributed inverse solver integrates the l(1)-norm spatial model with a temporal model of the source signals in order to avoid unstable activation patterns and "spiky" reconstructed signals often produced by the currently used sparse solver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 70  شماره 

صفحات  -

تاریخ انتشار 2013